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Dissolution slowness surfaces of cubic 
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Part 1 Theory and three-dimensiona/ representation for c/ass 2 3 
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The first part of this paper offers a tensorial method that gives analytical equations for the 
dissolution slowness surface of cubic crystals. Conditions for the proposed equations are 
outlined. The non-centrosymmetric class 2 3 is treated as an example. The evolution of the shape 
of the slowness surface with the higher rank of the dissolution tensors is studied, using in 
particular a three-dimensional graphical representation of the slowness surface. The conditions 
for obtaining slowness surfaces with a complex shape and an increasing number of extrema are 
discussed. 

1. In t roduct ion 
The anisotropic etching of semiconductor crystals 
such as silicon [1-5], germanium [1, 5-8] and gallium 
arsenide [1, 9-11] is a widely used process in micro- 
electronic device fabrication [1, 2] which has been 
used in particular to obtain V - groove structures [9, 
12, 13] in silicon and gallium arsenide wafers. More- 
over, in the past few years several attempts [2, 11, 
14-25] have been made to apply the photolitho- 
graphic process to the micromachining of mechanical 
devices, which constitute the sensing element of silicon 
integrated sensors. The fabrication techniques in the 
field of micromechanical devices are always based on 
anisotropic etching processes [2, 11]. The bias-con- 
trolled doping-selective etching technology [2, 26-28] 
appears only as a complementary process which is 
used for the possibility it offers of controlling the 
geometry of particular micromachined mechanical 
structures, such as cantilever beams [26-28]. It should 
be noted that the mechanical performance of micro- 
machined devices depends on their geometry. For 
example, when using potassium-water and EPW 
(ethylenediamine-pyrocathecol-water) solutions for 
the anisotropic etching of (100)-oriented silicon 
wafers, the main difficulty arises from the corner 
undercutting [3, 4, 29 31]. Some methods have re- 
cently been proposed to reduce corner undercutting 
[4, 30, 31], the most efficient method involving 
a mask-compensation technique [31]. 

Most silicon-integrated sensors are piezoresistive 
sensors [14, 15, 21-24, 32-37] which have been de- 
veloped to measure forces, pressures, displacements 
and accelerations. Many silicon sensors consist of four 
semiconductor strain gauges in the form of a 
Wheatstone bridge [22-24, 36, 37]. But recently new 
structures have been studied, such as pressure sensors 
composed of a single element with four terminals 
arranged like a Hall element [15, 32-35]. Designs of 
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strain gauges as well as four terminal sensors require 
the determination of particular orientations, for which 
the sensitivity and the resolution of sensors must be- 
come optimum [15, 32, 34, 37, 38]. The optimization 
of sensor geometry can involve the etching of micro- 
mechanical devices in wafers whose orientations differ 
from those commonly used in the semiconductor in- 
dustry (e.g. the (1 00) ( 1 1 0) and (1 1 1) silicon-oriented 
wafers). 

If the fabrication process starts with differently 
oriented wafers, we need to deal with a three-dimen- 
sional theoretical model for anisotropic etching which 
offers the possibility of predicting easily the exact 
geometrical features of etched micromechanical 
devices. Tellier and co-workers have recently sug- 
gested that this be done using a tensorial analysis of 
dissolution [39-42] provided the etching process can 
be described by kinematic theory [1, 43-46]. Part [ of 
this paper applies tensorial analysis to the anisotropic 
etching of crystals belonging to the cubic system, in 
order to derive generalized equations for the repres- 
entative surface of the dissolution slowness vector, L, 
[39, 47] in the case of centrosymmetric (m 3, 43 2, 
m 3 m) and non-centrosymmetric (2 3, 4 3 m) classes. 
Emphasis is placed on the necessity of developing 
calculations to tensors of higher ranks when marked 
anisotropy in etching is observed. The case of class 2 3 
is treated as an example. For a full exploitation of the 
tensorial method, application in the fields of theoret- 
ical and graphical simulation of etched shapes and of 
the design of micromachined mechanical structures 
are presented in part I! [5l]. Methods to predict the 
shapes of sections for etched grooves and to evaluate 
the extent of the under-etching are proposed. The 
slowness surfaces and some polar graphs of the dis- 
solution slowness related to class 2 3 are used to illus- 
trate these possibilities. 
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2. Theory 
2.1. Expressing the dissolution slowness 

surface 
In practice, the surface of a crystal of more and less 
complex geometrical shape can always be decom- 
posed in a great number of planar surface elements 
whose orientations correspond to those related to 
given crystallographic planes. When the dissolution 
process of a crystal is anisotropic, the various surface 
elements move within the crystal along different tra- 
jectories. We can represent the displacement of a given 
moving surface element by a propagation vector, P, 
[39, 43, 47] whose magnitude and direction depends 
on the orientation of the surface element. Tellier and 
co-workers [39, 43, 47] have recently shown that 
the propagation vectors associated with the various 
planar surface elements can be completely determined 
starting from the equation expressing the representa t - 
ive surface of the dissolution slowness vector, L, the 
so-called slowness surface. 

The simplest way to derive the equation for the 
slowness surface is to express the magnitude, L, of the 
slowness vector L in terms of a polynomial regression 
involving the three Cartesian components (nl, n2, n3) 
of the unit inward normal n to a surface element [39, 
40, 47]. Effectively, as the components nl, n2 and n3 
vary, the orientation (q~, 0) of the surface element is 
changed causing the displacement of the extremity of 
L along the slowness surface. Then L may be written 
in the compact form 

L = Do + Dini + Dijninj + Dijkninjnk 

+ Dijktninjnknt + . . .  (1) 

where the coefficients Do, D~, Do, Dijk, Dijkt, denote 
the components of dissolution tensors with increasing 
rank N. 

From the definition of L, it follows that all the 
subscripts can be interchanged [39]. This constitutes 
a first procedure to reduce the number of dissolution 
constants. In a second step we have to consider the 
symmetry of point groups to identify the independent 
dissolution constants and completely to characterize 
the dissolution process for the cubic crystal system. 
Because some symmetry point groups are centrosym- 
metric, we need to follow this procedure for tensors up 
to rank 10. 

2.2. Disso lu t ion  c o n s t a n t s  for  c lass  2 3 
In this section we deal with the minimum symmetry 
point group 2 3. Then we have only to consider the 
following properties [48]. 

1. Class 2 3 has three two-fold rotation axes which 
are chosen parallel to the Cartesian reference axes 
(X1,  X2, X3). 

2. The four three-fold rotation axes along the cube 
diagonals cyclically permute the subscripts. 

Let us firstly consider a transformation from axes 
(X1, X2, X3) to primed axes (x~, x~, x;)  in which the 
dissolution constants are changed in primed dissolu- 
tion constants, and secondly, deal with the symmetry 
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transformations associated with point group 2 3. Tak- 
ing successively the operator 2 along the axes Xl,  x2 
and x3 gives respectively 

t t t 
Xl = Xl ,X2 = - x 2 , x 3  = - x 3  (2) 

t 
X i = - - X 1 ,  X2 = X2, X 3 = - - X  3 (3) 

! ! t 
X1 = - - X 1 ,  X2 ~--- - - X 2 ,  x3 = x3 (4) 

Then we have just to recall that the dissolution con- 
stants transform, as do the product of corresponding 
coordinates [49] and that the symmetry operation 
2 along Xx, xz and x3 must leave the dissolution 
constants unchanged to obtain the constants which do 
not vanish. 

To illustrate this procedure, we can for example 
consider some constants appearing in tensors of ranks 
7 and 8. According to Equation 2 we have 

t 2 5 
D1122222 = D1122222 -+ - -D1122222  since Xl x2 

2 5 
_+ _ x I x2  

D~2222222 z D12222222 ~ - D 1 2 2 2 2 2 2 2  since x l x  7 

-XlX• (5) 

From relation 5, we infer that the dissolution con- 
stants involving only one or two different subscripts 
vanish when the number of one of the subscripts is 
odd. In other words, the remaining dissolution con- 
stants are those with a combination of an even num- 
ber of subscripts 1 and/or 2 and/or 3, or with an odd 
number of the three subscripts. 

Applying this condition to the sensor of rank 7 gives 
the dissolution constants which do not vanish 

D3333312 ,  D1111123 ,  D2222213 ,  D1112333 ,  

D1112223 ,  D2223331 (6) 

Further permuting the subscripts 1, 2 and 3 cyclically 
leads to the complementary relations 

0 1 1 1 1 1 2 3  = D2222213 = D3333312 (7) 

D1112223 = D1113332 = D2223331 (8) 

so that the number of independent dissolution con- 
stants reduces to two. 

It is also of interest to mention that by applying the 
symmetry transformations related to point group 2 3 
to tensors of ranks 6, 8 and 10, we distinguish two 
kinds of relations for the dissolution constants having 
unequal even numbers of two subscripts i j  (e.g. of 
respective forms Dujj j j ,  Diijjjjjj, Diijjjjjjjj and 
D , , j j j j j j ) .  For the tensor of rank 10, the double sym- 
metry relations are expressed as 

D1122222222 ~ D3311111111 ~ D2233333333 

D1133333333 = D2211111111 = D3322222222 (9) 

D1111222222 = D3333111111 = D2222333333 

D1111333333 = D2222111111 = D3333222222 (10) 

From these considerations, Table I lists the non- 
vanishing dissolution constants for tensors of ranks up 
to 10. We observe that the number of independent 
constants for tensors of odd rank increases from one 
for N = 1 to four for N = 9. For tensors of even rank, 



TABLE I Relations between dissolution constants for class 2 3. A, B, C, D, E refer to double relations 

Rank Nmax  Relations between dissolution constants nN 

0 1 
1 0 

2 1 

3 1 
4 2 

5 1 

6 4 

A 
7 2 

0o 
All the constants vanish 

D11 = D22 = D33 

0123 

01111 = 02222 = 03333;D1122 =D1133 =D2233 

011123 = D22213 = 033312 

D111111 = 0222222 = D333333; 0112233 

0111122 =D113333 = 0222233; D111133 =D112222 = 0223333 

01111123 = D1222223 =D1233333;D1112223 ~D1222333 =D1112333 

011111111 = 022222222 =D33333333 

D11112222 = D11113333 =D22223333 

011112233 = 011222233 =D11223333 

D11111122 = 022222233 =D11333333; 011111133 =D11222222 =D22333333 

0111222333; D111111123 ~D122222223 = D123333333 

0111112223 = D122222333 = D111233333; 01ii112333 =D111222223 ~ 0122233333 

D1111111111 = 02222222222 =03333333333 

01111112233 = D1122222233 =D1122333333;D1111222233 = D1122223333 ~ 01111223333 

D1111111122 ~ 02222222233 = D1133333333;01111111133 =01122222222 = D2233333333 

01111112222 = 02222223333 =D1111333333;D1111113333 = D1111222222 = D2222333333 

8 B 5 

9 4 

C 

10 

D 
E 

T A B L E  I I  Dissolution constants which must vanish when we pass from class 2 3 to class m 3 

O123 = 0, D11123 = 0, D1111123 = 0, D1112223 = 0, D111112223 = 0, 0111112333 = 0 

according to Table I, we have only one fundamental 
dissolution constant for the zero-rank tensor and 
seven fundamental dissolution constants referred to 
crystallographic axes for the tenth-rank tensor. 

2.3. Dissolution constants for other cubic 
classes 

The class m 3 which has also three equivalent twofold 
rotation axes shows a higher degree of symmetry than 
the class 2 3 because it possesses a centre of symmetry. 
To pass from class 2 3 to class m 3 it is only necessary 
to take the dissolution constants for tensors of odd 
ranks as zero (Table II). 

On the other hand, for the non-centrosymmetric 
class 4 3 m we have to retain the independent dissolu- 
tion constants corresponding to tensor of odd rank. 
However  it must be kept in mind that the class 213 m 
possesses three four-fold rotat ion-inversion axes lying 
parallel to the reference Cartesian axes. For  the trans- 
formations where the 4 axis coincides successively 
with the Xl, x 2 and x 3 axes, coordinates x[ in the 
new-rotated system are expressed in terms of the un- 
primed coordinates by means of the following equa- 
tions [41]: 

t t ! 
xl = - - x l , x 2  = --x3, x3 = x2 (11) 

! t ! 
X1 = X3, X2 = - - X 2 ,  X 3 = - - X  1 (12) 

! t ! 
Xl = - x 2 , x 2  = Xl,X3 -- - x 3  (13) 

The dissolution constants in Table I are divided 
into two groups of relations. Taking the 74 axis along 

the Xl axis, it readily appears that relation 11 leads to 

D111112333 ~ D111113222 s i n c e  xi5xt2xr33 

x S x 3 x  3 (14) 

conversely we have 

~5 ~ ~3 
0 1 1 1 1 1 3 2 2 2  ~ 9 1 1 1 1 1 2 3 3 3  since Xx X3X2 

x ~ x 2 x  3 (15) 

Then accounting for the fact that the double relations 
(A), (B), (C), (D) and (E) in Table I are replaced by 
single relations, the number of independent constants 
are finally affected, as indicated in Table III. 

The classes 4 3 2 and m 3 m differ from class 2 3 in 
that three four-fold rotation axes replace the preced- 
ing three two-fold rotation axes, plus the fact that the 
classes 4 3 2  and m 3 m  are centrosymmetric [48]. 
Then the specific relations associated with the three 

T A B L E  I I I  Additional relations between fundamental dissolu- 

tion constants when we pass from class 2 3 to class 4 3 m. nN is the 

number of independent dissolution constant for a tensor of rank N. 

One may note that for tensors of even rank the relations between 

the dissolution constants are identical to those listed in Table IV. 

Rank N m a x  Additional relations nN 

6 0111122 = DLI1133 3 

8 D11111122 = D11111133 4 

9 0111112223 = 0111112333 3 
10 D1111111122 = D1111111133 5 

D1111112222 = D1111113333 
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operator 4 become 

X1 --~ X1, X i -~ X3, X;  - -  X 2 (16) 

' ' ' (17) X 1 ~ - -X3 ,  X 2 ~ X2, X3 =- X 1 

' ' ' ( 1 8 )  X 1 = X2, X2 ~ - - X 1 ,  X 3 = X 3 

according to which one may assert that the remaining 
dissolution constants are those with an even number 
of subscripts 1 and/or 2, and/or 3 which belong 
to tensors of even rank (Table III). According to 
Table III, the equations relating the dissolution con- 
stants of the form Diijj j j  o r  Diijjjjjj o r  U~jjjjjj j j  or 
D.. j~ j j~  with i r  are again not decoupled [41]. 

2.4. The generalized equation for the slowness 
surface of class 2 3 

The general procedure for determining the generalized 
equation of a slowness surface is firstly to express 
the compact Equation 1 as a series in powers of the 
cartesian components of n. For  the unit inward nor- 
mal n we have 

n 2 + n 2 + n3 z = 1 (19) 

If we substitute Equation 19 into the expanded equa- 
tion for L and retain only terms related to the non- 
vanishing dissolution constants, it is now a simple 
matter to show that 

If we substitute Equation 21 into Equation 20, 
simple but tedious calculations yield the generalized 
equation of the slowness surface in the form 

= S1 ~ $2 q- $3 Jr- 5Ol + 5O2 '~ 5O3 (22) ~(~,  0) 

with 

Si = ~ akcosEkOsin2kO (23) 
k=0 

$2 = ~ ~ b~,m(sin(pcosq) cos20)2~(cosO)Zm (24) 
/=1 m=0 

$3 = ~ ~ CgL, M(COSq)cosO)2L(cosO)ZM (25) 
L=O M=0 

= ~ c~ (sin2 q0 sin20 cos0) z"+~ (26) 
r=O 

~ d~,, sin0(sinqacosqacos20) 2~+~ (cos0) 2~ 
s=0 t=0  

(27) 

Z ~ Z ~e.a,.(sin(p cosq~ sinOcos20) ~e+' 
P=O Q=O R=O 

x (cosq0 cos0) ~ (cos0) ~R (28) 

5O2 = 

= 

Thus the series S1, $2 and S 3 a r e  associated with 
tensors of even rank, whereas the series 5oi, S~2 and ~r 

come from tensors of odd rank. Moreover, the coeffi- 
cidents ~V,O,R with P = 1 involved in the series 5~ are 
expressed in terms of dissolution constants which belong 

L(nl, n2, n3) = Do  

+ 

+ 

2 2  2 2  2 2  + Dll + 6D123nln2n3 + D l l x l ( n l  4 + n4 + n4) + 6Dl122(nln2 + n ln3  + n 2 n 3 )  

4 2 4 2 20Dxllz3nin2n3 + D~ll~al(n 6 + n 6 + n 6) + 15D~xi22(n~n22 + n2n3 + n3n~) 

15Dlll133(nln342 q_ nzn142 -F n3n2)42 q_ 90Dl12233,,1,,2,,3.2.2.2 _1_ 42D1111123nlnzn3(n41 --I- n~ 

2 2  "k n 4) + 140Dlx12223nin2n3(n2n 2 + n~nZ3 + g/27/3) + ~Dl1111111( n8  -~- /"/28 + /'/8) 

6 2 6 2 6 2 6 2 6 2 6 2 n 3/e/2 ) l 1 1 3 3 ( n l n 3  q - n z n ~  + + 28Dl i i i i i22(n in2  + n2n3 + n3nl )  + 28Dil l  

+ 70Dll112222(Y/lt/244 _~_ nln34 4 _+_ n2n3)4 a + 420Dli i i2233njn2n 3 2 2 2  -I- 72Dltii11123 

ni n2n3(ni n2 -t- n 2 n 3 + n 3 nl ) X nln2n3(n 6 + n 6 q- n 6) + 504Dl11112223 4 2 4 2 4 2 

4- 2 4- 2 4 2 ~ 3 ~ 3 ~ 3  
-~- 504D111112333n l n21" / 3 (H l ? /3  -t- I '/2n I + /'/3/'/2) -~ 1 6 8 0 D l 1 1 2 2 2 3 3 3 , ~ 1 - 2  - 3  

8 2 8 2 
q- D l x l l l l l l l l ( n ~  0 -t- n~ 0 -F n310) + 4 5 D l l l l l l l l Z 2 ( n 1 8 r / 2  -1- n2n3 + n 3 n l )  

+ 45Dillllli133(nan3S 2 + nEnlS 2 + nSn2) + 210Dxxiiii2222(nin264. + n2n36 4 

6 4 -  6 4  6 4  6 4 -  2 2 2  4- ll13333(nxn3 + nznx + n3nz) 12600ii  n24 + n3ni)  + 210Dlli  + i i i i2233nin2n3(ni  + 

222233nln2na(nln2 + nln3 + n2n3) (20) + n34) + 3150Dli l l  2 2 2 2 2 2 3 2 2 

In the second step we have to specify the successive 
rotations about coordinate axes which are needed to 
reach the final orientation of an arbitrary crystal plate. 
If we adopt the specifications proposed in the IEEE 
standard on piezoelectricity [48], the rotation angles 
q0 and 0 are those indicated in Fig. 1: the first rotation 
of amount  qo is about the x3 axis and the second 
rotation of amount  0 about the xl axis. Then a doubly 
rotated surface element whose orientation is desig- 
nated by (% 0) has a unit inward normal n whose 
Cartesian components in the reference system 
(X1,  X2, X3) are given by 

ni = sint4cos0, n2 = -cosq)cos0,  n3 = - s i n 0  

(21) 

to tensors whose rank N is higher than 13. Then in most 
cases it can be shown easily that an appropriate relation 
for 903 may be 

J3  = ~ ~ ~Q,R sinqo costp sin0 cos20 
Q=o R=0 

• (COS~COS0)2Q(COs0)ER; Nma x < 13 (29) 

where Nmax denotes the higher rank of tensors. 
At this point it may be of interest to remark that an 

adequate use of the generalized Equation 22 requires 
some caution. Firstly, let us recall that the coefficients 
appearing in the six series are expressed in terms of the 
independent dissolution constants. Then it readily ap- 
pears that to reflect the symmetry of the class 2 3, these 
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Figure 1 Slowness surface (a) Rang 2; (b) Rang 4 

coefficients must  satisfy the following conditions im- 
posed by the crystal symmetry: 

Cgo, o = 0; bo, o = 0; 90,0 = 0 (30) 

~bl , , .  = az (31) 
m 

Z Cgo,M = 0 (32) 
M 

~, ~o,R = 0 (33) 
R 

2(bt~2,M " 2 ( ~ 3 , M  -]- 2 ~ 4 ,  M 4- 2 ~ : 7 5 , M  
M M M M 

-- ~ (~I,M; g m a x  m_ 10 (34)  
M 

Z ~@2,R 4- 2 " @ 3 , R  = - -  2 " @ l , R '  Nmax =- 10 
R R R 

(35) 

Secondly, one may  see that as the rank Nma x increases, 
Equat ion 22 contains more  and more coefficients. How-  
ever, care must  be taken that the order in which these 
additional coefficients are to be taken into account is by 
no means fortuitous. In reality it is possible to specify the 
number  of coefficients involved in the general equation 

of the slowness surface by means of symmetry rules 
summarized in Table V which gives all the possible 
values for the summat ion  indexes with respect to Nmax. 
Applying these selection rules in the special case where 
Nma x = 7 leads, for example, to 

L ( q ) ,  0)Nmax= 7 = Lv = ao + a l (cos0s in0)  2 

+ (sinqo cosqo cos 20)2 [bl ,o + bl, 1 cos20l  

+ (Co + do,o/4)sin2q~cos20cos0 + ego,1 cos20 

-~- (~70,2COS4 0 --1- ( ~ 0 , 3 C 0 8 6 0  --1- (COS(pCOS0) 2 

X [-('~1,0 ~- (~1,1 cOS20  ~- (~1,2 c O S 4 0 ]  

-~- (COS(~ COS0) 4" [ (~2 ,0  "~ (bO2, 1 COS20]  

+ r 0 (cosq~ cos0) 6 + sin0 (sine cosq~ cos20) 

X [do, l cos20 4- do,2COS40] 

+ dl, o sinO (sine cosq~ cos 20) 3 (36) 

Finally, we call attention to the fact that the compact  
expression (Equation 25) for the series S3 has been 
obtained after some mathematical  manipulations. Effec- 
tively the series $3 is connected to double rotations 

T A B L E I V Identification of the independent dissolution constants for classes 432 and m 3 m 

Rank Nm.x Relations between dissolution constants and independent constants nN 

0 D O 1 
2 Dll = D22 = D33 1 
4 D l l l l  = D2222 = D3333 2 

Dl122 = Dl133 = D2233 

6 Dl11111 = D222222 ~ D333333 3 
Dl11122 ~ Dl11133 ~ Dl12222 ~ Dl13333 = D222233 ~ D223333 
Dl12233 

8 Dl1111111 ~ D22222222 = D33333333 4 

Dl1111122 ~ Dl1111133 ~ Dl1222222 ~ Dl1333333 ~ D22222233 ~ D22333333 
Dl1112222 ~ Dl1113333 ~ D22223333 
D11112233 ~ Dl1222233 = Dl1223333 

10 D I I l l l l l l l l  = D2222222222 ~ D3333333333 5 
Dl111111122 ~ D ~ 1 ~ t l l a 3  = Dl122222222 = Da133333333 = D2222222233 = D2233333333 
Dl111112222 ~ D1111113333 = D1111222222 = Dll l la33333 = D2222223333 = D2222333333 
/)1111112233 ~ D1122222233 ~ Dl122333333 
Dl111222233 ~ Dl111223333 ~ Dl122223333 
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T A B L E  V Selection rules for coefficients appea r ing  in E q u a t i o n  22 when the r a n k  Nmax varies  f rom 0 to 10 

Coefficients Selection rules 

ak 

bl, m 

~L,M 
Cr 

ds't I d~ 

(&., 

~Q,R 

4k ~< Nm. x if Nm.~ is even, 4k < Nma x if Nm.x is odd  

4l + 2m ~< Nmax if Nma x is even; 4/ + 2m < Nma x if Nma x is odd 

2L + 2 M  ~< Nm.x if Nma x is even; 2L + 2 M  < Nmax if Nma x is odd; Nma x /> 6 

Nmax = 3(2r + 1) with Nma x odd 
2t < N ~  - 3 if t is odd and  Nm.x ~> 5 

2t ~< Nm.~ - 3 if t is even and  N~a~ > /5  

2t < Nmax - 6 if t is odd  and  Nma x >~ 7 
2t ~< Nm~x -- 6 if t is even and  Nm.x ~> 7 

2Q + R ~< Nm.~ - 3 if Nm.~ is odd;  2Q + R < Nm.x if Nm.~ is even and N~.~x > /9  

between the dissolution constants for tensors of rank 
N _ 6. Then combining Equations 20 and 21 leads to 
the alternative expression for $3. 

$3 = ~ ~ (sinq~cosqo COS20)2L[AL,M(Sin(pcosO) TM 
L=IM=I 

+ BL, M (COSq~ COS0) TM] + (sinq~ cos0 sin0) 2L 

x [AL, M(SinO) TM + Br, M(sing~cosO) TM] 

+ (cosq0 cos0 sin0) 2L [AL, r~ (cos~ cos0) TM 

+ BL, M (sin0) TM] (37) 

We see immediately that if one transforms terms of the 
form (siny) 2K into sums in ascending powers of cosT, 
we are now in a position to show that Equation 37 
reduces to Equation 25. A similar procedure has been 
followed to obtain the series 6:3 in the condensed 
forms 28 and 29 which contain ascending powers of 
(COS( D cosO) 2Q and of (cosO) 2R, 

2.5. Generalized equations for the slowness 
surface of other cubic classes 

For the class m3 the simultaneous examinations of 
Table II and Equation 22 give L as 

L = $1 + $2 + $3 (38) 

In this equation the expressions for $1, $2 and $3 are 
exactly the same as for class 2 3. Thus when asking 
about the selection rules for the indexes, the reader has 
just to refer to Table V. 

Turning to Table III, we observe that the major 
difference between class 2 3 and class 4 3 m arises from 
the vanishing of the double relations between the 
dissolution constants displayed in this table. As the 
double relations disappear for tensors of even rank, 
we get 

AL, M = BL, M (39) 

in Equation 37. As a result we can show after some 
mathematical rearrangements that the series $3 can be 
rewritten as sums of terms in the forms (cos0 sin0) zk 
and (cos0) 2m (sinq0 cosq~ cos20) 2~. Then the dissolu- 
tion constants which are included in the expressions 
for the coefficients AL, M and BL, M (i.e. for the coeffic- 
ients C~L,~) contribute now to the coefficients ak and 
b~,,,. This remark is also valid for the complete expres- 
sions of coefficients NQ, R; the dissolution constants 
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appearing in these expressions are now accounted for 
in the coefficients ds, t. Denoting for convenience the 
transformed coefficients a~', b~', m and d*t gives the 
following reduced expression for L 

L = S* + S* + 5:, + 5 p* (40) 

where $1", S~' and 5:~' are given by equations similar 
to the respective Equations 23, 24 and 29, except that 
the coefficients ak, bz,,, and d,, t are now replaced by the 
transformed coefficients. The selection rules as stated 
in Table V remain here again unchanged. 

Finally, for the centrosymmetric classes 43 2 and 
m 3 m the series 5:1 and 5:~' involved in Equation 40 
disappear and we obtain 

L = S* + S* (41) 

We have just derived all the generalized expressions 
for the slowness surface of crystals belonging to the 
cubic system. These expressions must be used with the 
help of selection rules as well as with the requirements 
of symmetry conditions affecting the coefficients 
(Equations 30 to 35). 

3. Theoret ical results for  class 23 
Some attempts are made to correlate the more and 
less complicated shapes of various dissolution slowness 
surfaces to the appearance of certain crystal faces 
which limit the contour of etched crystals. For this 
purpose we have chosen firstly to deal with a hypo- 
thetical crystal belonging to class 2 3, and secondly to 
increase progressively the rank Nma x in order to gener- 
ate successive slowness surfaces which deviate more 
and more from the isotropic slowness surface. 

3.1. The successive slowness surfaces 
for class 2 3 

A spherical slowness surface is connected to an iso- 
tropic etching process. Examining Equations 22 to 29 
it also readily appears that as the rank Nm, x remains 
smaller than three, only the radius No of the isotropic 
slowness surface can be affected by the value of Nmax. 
But increasing the higher rank Nm~x from 3 to 10 gives 
rise to more and more complicated topologies. Here 
the coefficients ak, bt,,., cgL, M, C,, ds, t and ~e, R have 
been modified with increasing Nmax in such a way that 



Figure 2 Slowness surfaces (a) Rang 6 (b) rang 8 

the successive slowness surfaces remain crudely cir- 
cumscribed in the initial sphere (Nma x = 0). 

A three-dimensional graphical representation of the 
slowness surface with Nma, varying from 0 to 10 has 
been worked out on a SUN workstation (SUN 4/110) 
using the Phong style shading (50) with a palette of 
256 colours. The workstation offers a high screen 
resolution, typically the display uses 1152 x 900 pixels. 
The results are displayed in Figs 1 3. In Figs 1-3a, the 
direction of observation Dob s which lies normal to the 
plane of figures is taken along the Xl axis. As soon as 
Nmax reaches 3, the general topology deviates from the 
isotropic sphere and is for certain directions pushed 
toward the spherical surface. Moreover, with increas- 
ing values of Nma x the slowness surface seems to be 
more and more distorted and the geometries become 
so complicated that they cannot be described in detail. 
One may also observe that as Nma x varies from 3 to 10, 
the slowness surface exhibits extrema corresponding 
to certain orientations; obviously the total number of 
extrema tends to increase with Nma x. For Nma x = 10, 

the slowness surface deviates considerably from 
a sphere. Then it may be of interest to change the 
direction Dobs; for this reason in Fig. 3 the direction 
Dob s is successively taken along the directions [1 003, 

Figure3 Slowness surfaces (a) rl00]; (b) [110]; (c) [111]; 
rang = 10 

[1 10] and E1 1 1]. To show more precisely how 
Nma x affects the topology of the slowness surface, the 
shape of sections with fixed values of % i.e. q)o = 0 ~ 
and (Po = 60~ are displayed in Figs 4 and 5. It should 
be pointed out that we thus obtain polar graphs of 
L lying in the (1 0 0) plane and in a plane close to the 
(2, 1 0) plane, respectively. As expected, we observe that 
increases in the value of Nma x c a u s e  the formation of 
additional extrema in the polar plot of the dissolution 
slowness whose orientations correspond to some par- 
ticular values, 0e, of the angle of cut, 0. In reality the 

5591 



Tensor ronk= B 

(c) 

1 I 

Figure 4 Slowness surface with q~o = 0 
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Figure 5 Slowness surface with q~o = 60~ 
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amplitude as well as the position of the extrema are 
modified by changes in the value of Nmax. 

At this point it is interesting to verify whether the 
derived shapes satisfy the crystal symmetry. Firstly let 
us consider the polar graphs obtained for Nma~ = 9, 
setting q~ = 0 and q~ = 90 ~ (Fig. 6). Obviously we are 
now concerned with the respective (1 00) and (0 10) 
sections of the slowness surface. We readily observe 
that the symmetry operations 2 associated with the 
crystallographic axes xl ,  x2 and x 3 are satisfied. 
Moreover, as we can also permute cyclically, the two- 
fold axes the shapes of the polar graphs in the (1 00) 
and (0 1 0) sections must be similar, except that we 
pass from one graph to the other by a rotation of 90 ~ 
about the xl axis. Examination of Fig. 6 shows that 
this symmetry requirement is also fulfilled. We can 
also try to start from the general Equation 22 to 
demonstrate this symmetry property. Setting q~ = 0 ~ 
and q0 = 90 ~ into Equation 22 and for convenience 
l i m i t i n g  Nma x to 7 we obtain 

L . . . .  (q~ = 0 ~ 0) = ao + al(cos0sin0) 2 

-[- ((~0,1 "[- (~1,0) c0S20 

-]- ((b~0,2 "~ (~1,1 '"~- (~2,0) 

XCOS40 ~- ((~71,2 At- (~2,1 

+ cg3, o + ~o,3)c0s60 (42) 

and 

Lx,x3(cP = 90 ~ O) a o  + al(cos0sin0) 2 

--1- (~0,1COS20 --[- (~0,2COS40 

+ (~0, 3 COS 60 (43) 

It is left as an exercise for the reader to show that 
changing 0 into 0 + 90 ~ (i.e. cos0 into sin0) in Equa- 
tion 36 and rearranging gives just the equation for the 
L . . . .  polar graph. 

Secondly, let us recall that the [1 1 1] direction 
which coincides with a diagonal of a cube is a three- 
fold rotation axis. Then viewing the slowness surface 
along this direction, the symmetry operation 3 must 
be verified. It is sufficient to examine Fig. 3c to observe 
a complete fulfilment of this condition. Thus we con- 
clude that the derived equation adequately reflects the 
symmetry of class 2 3. 

4. Conclusions 
The tensorial representation of the anisotropic dis- 
solution process has been used to derive analytical 
expressions for the dissolution slowness surfaces of 
crystals belonging to cubic classes. It is shown that 
a complete exploitation of the procedure needs com- 
plementary relations between the coefficients which 
reflect the symmetry of the corresponding point 
group. Class 2 3 has been treated as an example, and 
calculations have been performed for different values 
of the higher rank, Nma x. I t  clearly appears that as 
Nma x increases from zero to ten, the slowness surface 
exhibits a more and more complex shape. This evolv- 
ing shape is characterized by an increasing number of 
extrema; behaviour which is conveniently illustrated 
by polar diagrams lying in differently oriented sections 
of the slowness surface. Moreover, three-dimensional 
representations of the slowness surface as viewed 
along various crystallographic directions reveal that 
the slowness surface satisfies all the symmetry opera- 
tions specific to the point group. In these conditions, 
the equations derived in Part I wilt be used in Part II 
to develop numerical and graphical procedures for 
describing the equilibrium shapes of crystals. 
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